
Demystifying the Git
A ∼couple of things you need to understand to work more efficiently

Benôıt ”tsuna” Sigoure
<tsuna@stumbleupon.com>

June 9, 2010

Benôıt Sigoure Demystifying the Git June 9, 2010 1 / 48

1 Introduction
Getting started
Differences with other SCMs like SVN

2 The basics
The index
Your daily workflow
Help! I screw up my repository!
Tips and tricks

3 More advanced
Code reviews
Under the hood

4 Conclusion
Final Words
Bonus

Benôıt Sigoure Demystifying the Git June 9, 2010 2 / 48

Why this presentation?

“I started to understand those under-the-hood concepts [. . .]
suddenly everything made sense. I could understand the manual
pages and perform all sorts of source control tasks. Everything
that seemed so cryptic and obscure now was perfectly clear.”
– Charles Duan [1]

Benôıt Sigoure Demystifying the Git June 9, 2010 3 / 48

What you need to know to get started

This presentation assumes you know:

• Files, directories, how to use a terminal etc.

• Understand what version control is about.

• Bonus: know what a SHA1 is.

That’s all!

Benôıt Sigoure Demystifying the Git June 9, 2010 4 / 48

Outline

1 Introduction
Getting started
Differences with other SCMs like SVN

2 The basics
The index
Your daily workflow
Help! I screw up my repository!
Tips and tricks

3 More advanced
Code reviews
Under the hood

4 Conclusion
Final Words
Bonus

Benôıt Sigoure Demystifying the Git June 9, 2010 5 / 48

Tell Git who you are

$ git config --global user.name "My Name"
$ git config --global user.email "my@email.example.com"

This will populate ∼/.gitconfig with:

[user]
name = My Name
email = my@email.example.com

Benôıt Sigoure Demystifying the Git June 9, 2010 6 / 48

Add shiny colors

$ git config --global color.diff auto
$ git config --global color.status auto
$ git config --global color.branch auto

Benôıt Sigoure Demystifying the Git June 9, 2010 7 / 48

Unclutter your life

Various files crop up during development and clutter the output of git
status. Don’t learn to ignore them, just ignore them.

$ git config --global core.excludesfile ~/.gitignore
$ cat >>~/.gitignore <<EOF
*.[ao]
*.so
*.pyc
.DS_Store
\#*
.*.sw?
*~
EOF

Benôıt Sigoure Demystifying the Git June 9, 2010 8 / 48

Give your fingers a break

I’m lazy, and the only thing I miss from SVN is the short aliases, so let’s
use them with Git too!

$ git config --global alias.st status
$ git config --global alias.ci commit
$ git config --global alias.co checkout
$ git config --global alias.diffi diff --cached
$ git config --global alias.diffstat diff --stat
$ git config --global alias.diffw diff --ignore-all-space
$ git config --global alias.slog log --pretty=oneline

We’ll see what those do shortly!

Benôıt Sigoure Demystifying the Git June 9, 2010 9 / 48

Outline

1 Introduction
Getting started
Differences with other SCMs like SVN

2 The basics
The index
Your daily workflow
Help! I screw up my repository!
Tips and tricks

3 More advanced
Code reviews
Under the hood

4 Conclusion
Final Words
Bonus

Benôıt Sigoure Demystifying the Git June 9, 2010 10 / 48

Think Git

“A lot of the good things in git come exactly from the fact that
git does not do things like most traditional SCM’s do.”
– Linus Torvalds [4]

• Git doesn’t track individual files, it tracks contents.

• Git has real branches.

• This thing called the “index”.

Benôıt Sigoure Demystifying the Git June 9, 2010 11 / 48

Tracking files vs contents: the SVN model

/

src

main.c

tests

unittest.c

Makefile

/

src

main.c

tests

unittest.c

Makefile

regtest.c

Delta

Add

Revision N Revision N+1
• Each file has its own

history.

• SVN stores a delta
when a file is changed.

Benôıt Sigoure Demystifying the Git June 9, 2010 12 / 48

Tracking files vs contents: the Git model

/

tests

unittest.c

Makefile

/

src

main.c

tests

Makefile

regtest.c

Revision A Revision B

src

main.c

unittest.c

• Each revision in Git
has its own snapshot
of the entire tree of
files.

• Each element in the
tree (an “object”) is
identified by a unique
SHA1.

• Objects with the same
SHA1 are shared.

Benôıt Sigoure Demystifying the Git June 9, 2010 13 / 48

Tracking files vs contents: what does it change?

Instead of storing the life of each file tracked, Git stores separately
content, history and structure. [3]

• Content is stored in blob objects.
Blobs have no name.

• Structure is stored in tree objects.
Trees organize blobs in a named hierarchy.

• History is stored in commit objects.
Commits keep trees in a chronological order.

Main consequence:

If two files have the same contents, they’re the same file.
The trees referencing them may do so under a different name.

Benôıt Sigoure Demystifying the Git June 9, 2010 14 / 48

Tracking files vs contents: what does it change?

Instead of storing the life of each file tracked, Git stores separately
content, history and structure. [3]

• Content is stored in blob objects.
Blobs have no name.

• Structure is stored in tree objects.
Trees organize blobs in a named hierarchy.

• History is stored in commit objects.
Commits keep trees in a chronological order.

Main consequence:

If two files have the same contents, they’re the same file.
The trees referencing them may do so under a different name.

Benôıt Sigoure Demystifying the Git June 9, 2010 14 / 48

Tracking files vs contents: what does it change?

Main consequence:

If two files have the same contents, they’re the same file.
The trees referencing them may do so under a different name.

⇒ Git doesn’t need to be told when a file is renamed.
Merging different branches in which files have moved around Just Works!

Benôıt Sigoure Demystifying the Git June 9, 2010 14 / 48

Outline

1 Introduction
Getting started
Differences with other SCMs like SVN

2 The basics
The index
Your daily workflow
Help! I screw up my repository!
Tips and tricks

3 More advanced
Code reviews
Under the hood

4 Conclusion
Final Words
Bonus

Benôıt Sigoure Demystifying the Git June 9, 2010 15 / 48

What the heck is the “index”?

• Most SCMs have just a working copy and a repository.
• Whatever you do in the working copy will be in the next commit.
• Often you can commit a subset of the files at a time.

Working
Copy

Index

Local
Repository

git diff REV

git diff

git diff --cached

Benôıt Sigoure Demystifying the Git June 9, 2010 16 / 48

What the heck is the “index”?

• Git has a third thing in between: the index
• It’s a staging area. Whatever is in it will be in the next commit.
• You have a very fine grained control over the index.

Working
Copy

Index

Local
Repository

Remote
Repository

git commit

gi
t

ch
ec

ko
ut

 R
EV

gi
t

re
se

t
--

ha
rd git commit -a

git add
git reset HEAD

git reset

git pushgit fetch

gi
t

pu
ll

Working
Copy

Index

Local
Repository

git diff REV

git diff

git diff --cached

Benôıt Sigoure Demystifying the Git June 9, 2010 16 / 48

What the heck is the “index”?

• Where is it? In a file under the .git/ directory.
• What does it change? It’s one of the killer features of Git!
• You can chose exactly what bits of changes go into the index.

Working
Copy

Index

Local
Repository

Remote
Repository

git commit

gi
t

ch
ec

ko
ut

 R
EV

gi
t

re
se

t
--

ha
rd git commit -a

git add
git reset HEAD

git reset

git pushgit fetch

gi
t

pu
ll

Working
Copy

Index

Local
Repository

git diff REV

git diff

git diff --cached

Benôıt Sigoure Demystifying the Git June 9, 2010 16 / 48

What the heck is the “index”?

• git diff can show you the differences between each layer.
• By default, only the differences with the index are shown.
• To ignore the index, specify a revision to compare with.

Working
Copy

Index

Local
Repository

git diff REV

git diff

git diff --cached

Benôıt Sigoure Demystifying the Git June 9, 2010 16 / 48

The index in practice...

$ git diff
diff --git a/quotes.txt b/quotes.txt
index f16f045..200de06 100644
--- a/quotes.txt
+++ b/quotes.txt
@@ -1,7 +1,10 @@
Humans are not proud of their ancestors, and rarely invite
them round to dinner.
+Time is an illusion. Lunchtime doubly so.
I may not have gone where I intended to go, but I think I
have ended up where I needed to be.
In the beginning the Universe was created. This has made a
lot of people very angry and has been widely regarded as a
bad move.
+It is a mistake to think you can solve any major problems
+just with potatoes.

Benôıt Sigoure Demystifying the Git June 9, 2010 17 / 48

The index in practice...

$ git add -i
staged unstaged path

1: unchanged +3/-0 quotes.txt

*** Commands ***
1: [s]tatus 2: [u]pdate 3: [r]evert 4: [a]dd untracked
5: [p]atch 6: [d]iff 7: [q]uit 8: [h]elp

What now>

p
staged unstaged path

1: unchanged +3/-0 [q]uotes.txt
Patch update>>

1
staged unstaged path

* 1: unchanged +3/-0 [q]uotes.txt
Patch update>> (hit enter)

Benôıt Sigoure Demystifying the Git June 9, 2010 17 / 48

The index in practice...

$ git add -i
staged unstaged path

1: unchanged +3/-0 quotes.txt

*** Commands ***
1: [s]tatus 2: [u]pdate 3: [r]evert 4: [a]dd untracked
5: [p]atch 6: [d]iff 7: [q]uit 8: [h]elp

What now> p
staged unstaged path

1: unchanged +3/-0 [q]uotes.txt
Patch update>>

1
staged unstaged path

* 1: unchanged +3/-0 [q]uotes.txt
Patch update>> (hit enter)

Benôıt Sigoure Demystifying the Git June 9, 2010 17 / 48

The index in practice...

$ git add -i
staged unstaged path

1: unchanged +3/-0 quotes.txt

*** Commands ***
1: [s]tatus 2: [u]pdate 3: [r]evert 4: [a]dd untracked
5: [p]atch 6: [d]iff 7: [q]uit 8: [h]elp

What now> p
staged unstaged path

1: unchanged +3/-0 [q]uotes.txt
Patch update>> 1

staged unstaged path
* 1: unchanged +3/-0 [q]uotes.txt
Patch update>> (hit enter)

Benôıt Sigoure Demystifying the Git June 9, 2010 17 / 48

The index in practice...

diff --git a/quotes.txt b/quotes.txt
index f16f045..200de06 100644
--- a/quotes.txt
+++ b/quotes.txt
@@ -1,7 +1,10 @@
Humans are not proud of their ancestors, and rarely invite
them round to dinner.
+Time is an illusion. Lunchtime doubly so.
I may not have gone where I intended to go, but I think I
have ended up where I needed to be.
In the beginning the Universe was created. This has made a
lot of people very angry and has been widely regarded as a
bad move.
+It is a mistake to think you can solve any major problems
+just with potatoes.
Stage this hunk [y,n,q,a,d,/,s,e,?]? s (split)

Benôıt Sigoure Demystifying the Git June 9, 2010 17 / 48

The index in practice...

Split into 2 hunks.
@@ -1,7 +1,8 @@
Humans are not proud of their ancestors, and rarely invite
them round to dinner.
+Time is an illusion. Lunchtime doubly so.
I may not have gone where I intended to go, but I think I
have ended up where I needed to be.
In the beginning the Universe was created. This has made a
Stage this hunk [y,n,q,a,d,/,j,J,g,e,?]? y (yes, add it)

@@ -5,3 +6,5 @@
In the beginning the Universe was created. This has made a
lot of people very angry and has been widely regarded as a
bad move.
+It is a mistake to think you can solve any major problems
+just with potatoes.
Stage this hunk [y,n,q,a,d,/,K,g,e,?]? n (no)

Benôıt Sigoure Demystifying the Git June 9, 2010 17 / 48

The index in practice...

Split into 2 hunks.
@@ -1,7 +1,8 @@
Humans are not proud of their ancestors, and rarely invite
them round to dinner.
+Time is an illusion. Lunchtime doubly so.
I may not have gone where I intended to go, but I think I
have ended up where I needed to be.
In the beginning the Universe was created. This has made a
Stage this hunk [y,n,q,a,d,/,j,J,g,e,?]? y
@@ -5,3 +6,5 @@
In the beginning the Universe was created. This has made a
lot of people very angry and has been widely regarded as a
bad move.
+It is a mistake to think you can solve any major problems
+just with potatoes.
Stage this hunk [y,n,q,a,d,/,K,g,e,?]? n (no)

Benôıt Sigoure Demystifying the Git June 9, 2010 17 / 48

The index in practice...

$ git st
On branch master
Your branch is ahead of ’origin/master’ by 1 commit.
#
Changes to be committed:
(use "git reset HEAD <file>..." to unstage)
#
modified: quotes.txt
#
Changed but not updated:
(use "git add <file>..." to update what will be committed)
(use "git checkout -- <file>..." to discard changes in ...)
#
modified: quotes.txt

Benôıt Sigoure Demystifying the Git June 9, 2010 17 / 48

The index in practice...

$ git diff
diff --git a/quotes.txt b/quotes.txt
index 93fc987..200de06 100644
--- a/quotes.txt
+++ b/quotes.txt
@@ -6,3 +6,5 @@ have ended up where I needed to be.
In the beginning the Universe was created. This has made a
lot of people very angry and has been widely regarded as a
bad move.
+It is a mistake to think you can solve any major problems
+just with potatoes.

Benôıt Sigoure Demystifying the Git June 9, 2010 17 / 48

The index in practice...

$ git diffi (my alias for diff --cached)

diff --git a/quotes.txt b/quotes.txt
index f16f045..93fc987 100644
--- a/quotes.txt
+++ b/quotes.txt
@@ -1,5 +1,6 @@
Humans are not proud of their ancestors, and rarely invite
them round to dinner.
+Time is an illusion. Lunchtime doubly so.
I may not have gone where I intended to go, but I think I
have ended up where I needed to be.
In the beginning the Universe was created. This has made a

$ git commit -m ’Add a quote about time’
[master 34a68e5] Add a quote about time
1 files changed, 1 insertions(+), 0 deletions(-)

Benôıt Sigoure Demystifying the Git June 9, 2010 17 / 48

The index in practice...

$ git diffi
diff --git a/quotes.txt b/quotes.txt
index f16f045..93fc987 100644
--- a/quotes.txt
+++ b/quotes.txt
@@ -1,5 +1,6 @@
Humans are not proud of their ancestors, and rarely invite
them round to dinner.
+Time is an illusion. Lunchtime doubly so.
I may not have gone where I intended to go, but I think I
have ended up where I needed to be.
In the beginning the Universe was created. This has made a
$ git commit -m ’Add a quote about time’
[master 34a68e5] Add a quote about time
1 files changed, 1 insertions(+), 0 deletions(-)

Benôıt Sigoure Demystifying the Git June 9, 2010 17 / 48

The index in practice...

$ git commit -a -m ’Add another quote’
[master c04c938] Add another quote
1 files changed, 2 insertions(+), 0 deletions(-)
$ git slog
c04c938df8c1dcfb7d55938b2316f59f42ab29ee Add another quote
34a68e548f8755324bf79bb02e7c9c8ce0f9acd5 Add a quote about time
[...]

Benôıt Sigoure Demystifying the Git June 9, 2010 17 / 48

Outline

1 Introduction
Getting started
Differences with other SCMs like SVN

2 The basics
The index
Your daily workflow
Help! I screw up my repository!
Tips and tricks

3 More advanced
Code reviews
Under the hood

4 Conclusion
Final Words
Bonus

Benôıt Sigoure Demystifying the Git June 9, 2010 18 / 48

Overview of what you’ll frequently need

• New branch: git co -b mybranch origin/master

• What’s new in my branch? git log ...origin/master
(3 dots, will explain later)

• Sync up with others: git pull --rebase

Benôıt Sigoure Demystifying the Git June 9, 2010 19 / 48

Create a new repository

$ git init # Create a brand new repository
<create directories and files>
$ git add . # Add all files in the index
$ git commit -m ’My initial commit’

A
“My initial commit”

HEAD

master

• Commit A doesn’t have a
parent.

• Commit A is reachable through
the branch master.

• HEAD is maintained by Git to
always point to the head of
the current branch.

Benôıt Sigoure Demystifying the Git June 9, 2010 20 / 48

Create a new repository

$ git init # Create a brand new repository
<create directories and files>
$ git add . # Add all files in the index
$ git commit -m ’My initial commit’

A
“My initial commit”

HEAD

master

• Commit A doesn’t have a
parent.

• Commit A is reachable through
the branch master.

• HEAD is maintained by Git to
always point to the head of
the current branch.

Benôıt Sigoure Demystifying the Git June 9, 2010 20 / 48

Clone an existing repository

$ git clone url://to/repository
Initialized empty Git repository in .../repository/.git/
[...]

A master Remote

Local

A
“My initial commit”

HEAD

masterorigin/
master

git clone

Benôıt Sigoure Demystifying the Git June 9, 2010 21 / 48

Clone an existing repository

$ git clone url://to/repository
Initialized empty Git repository in .../repository/.git/
[...]

A master Remote

Local

A
“My initial commit”

HEAD

masterorigin/
master

git clone

The remote repository is copied
locally.

Every remote branch appears
locally under its own
namespace called origin.

origin is a “remote”.

You can have as many remotes
as you want.

Benôıt Sigoure Demystifying the Git June 9, 2010 21 / 48

Clone an existing repository

$ git clone url://to/repository
Initialized empty Git repository in .../repository/.git/
[...]

A master Remote

Local

A
“My initial commit”

HEAD

masterorigin/
master

git clone

Git automatically created a
local branch called master.

Your master is in the same
state as its remote counterpart,
origin/master.

$ git branch -a
* master

remotes/origin/master

Benôıt Sigoure Demystifying the Git June 9, 2010 21 / 48

Let’s create some commits to pretend we’re working

$ echo ’Hello World!’ >README && git add README
$ git commit -m ’Add a README’
[master B] Add a README

A
“My initial commit”

HEAD

masterorigin/
master

B
“Add a README”

A master Remote

Local

Benôıt Sigoure Demystifying the Git June 9, 2010 22 / 48

Let’s create some commits to pretend we’re working

$ echo ’Hello World!’ >README && git add README
$ git commit -m ’Add a README’
[master B] Add a README

A
“My initial commit”

HEAD

masterorigin/
master

B
“Add a README”

A master Remote

Local

A is the parent commit of B.

Commit B only exists in our
own private repository.

Benôıt Sigoure Demystifying the Git June 9, 2010 22 / 48

Let’s create some commits to pretend we’re working

$ echo ’Hello World!’ >README && git add README
$ git commit -m ’Add a README’
[master B] Add a README

A
“My initial commit”

HEAD

masterorigin/
master

B
“Add a README”

A master Remote

Local

Our master branch is now 1
commit ahead of origin’s.

$ git st
On branch master
Your branch is ahead of
’origin/master’ by 1
commit.

nothing to commit

(working directory clean)

Benôıt Sigoure Demystifying the Git June 9, 2010 22 / 48

Let’s work some more

<hack hack hack>
$ git commit -m ’Fix bug #42’
[master C] Fix bug #42

A
“My initial commit”

HEAD

masterorigin/
master

B
“Add a README”

C
“Fix bug #42”

A master Remote

Local

Benôıt Sigoure Demystifying the Git June 9, 2010 23 / 48

In the mean time. . .

A
“My initial commit”

HEAD

masterorigin/
master

B
“Add a README”

C
“Fix bug #42”

A master Remote

Local

X
“Code clean-up”

Someone else pushed a commit
X to the remote repository.

This change isn’t visible to us
yet as it hasn’t made it to our
local repository.

Benôıt Sigoure Demystifying the Git June 9, 2010 24 / 48

Get the remote changes

$ git fetch
[...]

A..X master -> origin/master

A master Remote

Local

X
“Code clean-up”

A
“My initial commit”

HEAD

master

origin/
master

B
“Add a README”

C
“Fix bug #42”

X
“Code clean-up”

git fetch

FETCH_HEAD

We updated our view of the
remote origin.

FETCH HEAD is created to
provide references to all the
remote heads we just retrieved.

Benôıt Sigoure Demystifying the Git June 9, 2010 25 / 48

Integrate the remote changes

A master Remote

Local

X
“Code clean-up”

A
“My initial commit”

HEAD

master

origin/
master

B
“Add a README”

C
“Fix bug #42”

X
“Code clean-up”

There are two ways to integrate
your changes with their
changes.

• Join both lines of
development together
git merge

• Keep a single, linear line of
development
git rebase

Benôıt Sigoure Demystifying the Git June 9, 2010 26 / 48

Integrate the remote changes with a merge

$ git merge origin/master
Merge made by recursive.
2 files changed, 13 insertions(+), 42 deletions(-)

A master Remote

Local

X
“Code clean-up”

A
“My initial commit”

HEAD

masterorigin/
master

B
“Add a README”

C
“Fix bug #42”

X
“Code clean-up”

M
“Merge branch 'master' of Remote”

M is a merge commit: it has 2
parents (C and X).

Our history is non-linear and
reflects 2 parallel lines of
development.

If there are conflicting changes,
the conflict resolution is
recorded in M.

Benôıt Sigoure Demystifying the Git June 9, 2010 27 / 48

Integrate the remote changes with a merge

$ git merge origin/master
Merge made by recursive.
2 files changed, 13 insertions(+), 42 deletions(-)

A master Remote

Local

X
“Code clean-up”

A
“My initial commit”

HEAD

masterorigin/
master

B
“Add a README”

C
“Fix bug #42”

X
“Code clean-up”

M
“Merge branch 'master' of Remote”

Several people + frequent
integrations
= many merges
= history hard to read

Because
pull = fetch + merge

most people do it

Benôıt Sigoure Demystifying the Git June 9, 2010 27 / 48

Integrate the remote changes with rebase

A master Remote

Local

X
“Code clean-up”

A
“My initial commit”

HEAD

master

origin/
master

B
“Add a README”

C
“Fix bug #42”

X
“Code clean-up”

Benôıt Sigoure Demystifying the Git June 9, 2010 28 / 48

Integrate the remote changes with rebase

$ git rebase origin/master
First, rewinding head to replay your work on top of it...

A master Remote

Local

X
“Code clean-up”

A
“My initial commit”

HEAD

master

origin/
master

X
“Code clean-up”

C
“Fix bug #42”

B
“Add a README”

Step 1: Catch up with the
remote

Note that HEAD doesn’t point
to any branch, it’s “detached”.

Benôıt Sigoure Demystifying the Git June 9, 2010 28 / 48

Integrate the remote changes with rebase

$ git rebase origin/master
First, rewinding head to replay your work on top of it...
Applying: Add a README

A master Remote

Local

X
“Code clean-up”

B

A
“My initial commit”

HEAD

master

origin/
master

X
“Code clean-up”

C
“Fix bug #42”“Add a README”

B'
“Add a README”

Step 2: Re-apply each of your
commits

Benôıt Sigoure Demystifying the Git June 9, 2010 28 / 48

Integrate the remote changes with rebase

$ git rebase origin/master

Applying: Fix bug #42

A master Remote

Local

X
“Code clean-up”

A
“My initial commit”

HEAD

master

origin/
master

X
“Code clean-up”

C
“Fix bug #42”

B
“Add a README”

B'
“Add a README”

C'
“Fix bug #42”

Git rewrote the history. Now it
appears as if B’ and C’ were
created after X.

The original B and C are not
lost, they’re just not reachable
through any branch (garbage).

You can also use
git pull --rebase
for fetch + rebase.

Benôıt Sigoure Demystifying the Git June 9, 2010 28 / 48

When to use merge vs rebase

A master Remote

Local

X
“Code clean-up”

A
“My initial commit”

HEAD

master

origin/
master

B
“Add a README”

C
“Fix bug #42”

X
“Code clean-up”

Both merge and rebase find the
common ancestor to know
what to merge / rebase.

A is the common ancestor of
origin/master and master.

Benôıt Sigoure Demystifying the Git June 9, 2010 29 / 48

When to use merge vs rebase

If history has already been published, don’t rewrite it!

⇒ Don’t rebase commits you already pushed.
⇒ Don’t rebase others’ commits.

Benôıt Sigoure Demystifying the Git June 9, 2010 29 / 48

Outline

1 Introduction
Getting started
Differences with other SCMs like SVN

2 The basics
The index
Your daily workflow
Help! I screw up my repository!
Tips and tricks

3 More advanced
Code reviews
Under the hood

4 Conclusion
Final Words
Bonus

Benôıt Sigoure Demystifying the Git June 9, 2010 30 / 48

When things don’t work out as expected

DON’T PANIC
You can’t break a Git repository∗†

• Deleting and re-creating your repository is never the right solution to
your problem and may cause permanent data loss.

• You can always “go back” to a previously known good state.

• Git records every action you take in the reflog. You can use it to
undo every step you take.

• Git will never lose†, modify or corrupt existing commits.

∗Fiddling with things under .git may void your warranty.
†Running git gc may prevent you from undoing a mistake.

Benôıt Sigoure Demystifying the Git June 9, 2010 31 / 48

After a bad rebase

By far the most frequent problem I see when people start using rebase.

A

HEAD

master

origin/
master

B X

C

Y

D

“I’m seeing weird conflicts on
files I haven’t touched when
doing a rebase.”

Most of the time it’s due to a
bad rebase done earlier,
sometimes days before (so you

don’t realize it’s what’s causing

trouble now).

Benôıt Sigoure Demystifying the Git June 9, 2010 32 / 48

After a bad rebase

Typical case: B was rebased even though it was already pushed.

A

HEAD

master

origin/
master

B X

C

Y

DB'

C' D'

Later Git will find that the
common ancestor between
master and origin/master is
A instead of B, and it will be
confused by the duplicated
commit B’.

Benôıt Sigoure Demystifying the Git June 9, 2010 32 / 48

After a bad rebase

Typical case: B was rebased even though it was already pushed.

A

HEAD

master

origin/
master

B X

C

Y

DB'

C' D'

Possible fixes:

• You’re still in the middle
of the rebase:
git rebase --abort

• Use the reflog to go
back before the rebase.

• Rebuild your branch with
cherry-pick.

Benôıt Sigoure Demystifying the Git June 9, 2010 32 / 48

Go back to a known good state with the reflog

You can undo the rebase by identifying which revision you were at before.

A

HEAD

master

origin/
master

B X

C

Y

DB'

C' D'

HEAD@{0}HEAD@{1}

HEAD@{2}

HEAD@{3}

HEAD@{4}

Identify the revision you want
to go back to:

$ git reflog
D’ HEAD@{0} rebase: ..
C’ HEAD@{1} rebase: ..
B’ HEAD@{2} rebase: ..
D HEAD@{3} commit: ..

C HEAD@{4} commit: ..

Before the rebase we were at
HEAD@{3}

Benôıt Sigoure Demystifying the Git June 9, 2010 33 / 48

Go back to a known good state with the reflog

You can undo the rebase by identifying which revision you were at before.

A

HEAD

master

origin/
master

B X

C

Y

DB'

C' D'

HEAD@{1}HEAD@{2}

HEAD@{3}

HEAD@{4}

HEAD@{5}

HEAD@{0}

So let’s go back to HEAD@{3}

$ git reset --hard HEAD@{3}

--hard resets everything: all
files (make sure you don’t have

any pending change!), the index,
and the head (master and HEAD)

Benôıt Sigoure Demystifying the Git June 9, 2010 33 / 48

Go back to a known good state with cherry-pick

Sometimes you did some work after the bad rebase.

A

HEAD

master

origin/
master

B X

C

Y

DB'

C' D' E F

Use the same method as
previously to undo the bad
rebase.

$ git reset --hard HEAD@{3}

Benôıt Sigoure Demystifying the Git June 9, 2010 34 / 48

Go back to a known good state with cherry-pick

Sometimes you did some work after the bad rebase.

A

HEAD

master

origin/
master

B X

C

Y

DB'

C' D' E F

Oops, now we’re missing
E and F!

You can “cherry pick” them
back into your branch.

git cherry-pick E

Benôıt Sigoure Demystifying the Git June 9, 2010 34 / 48

Go back to a known good state with cherry-pick

Sometimes you did some work after the bad rebase.

A

HEAD

master

origin/
master

B X

C

Y

DB'

C' D' E F

E'

One more...

git cherry-pick F

Benôıt Sigoure Demystifying the Git June 9, 2010 34 / 48

Go back to a known good state with cherry-pick

Sometimes you did some work after the bad rebase.

A

HEAD

master

origin/
master

B X

C

Y

DB'

C' D' E F

E' F'

What we did manually is very
much like what git rebase
does.

Actually... You can use git
rebase to make the process
simpler!

Benôıt Sigoure Demystifying the Git June 9, 2010 34 / 48

Go back to a known good state with rebase

In interactive mode, you can tell git rebase what you want.

A

HEAD

master

origin/
master

B X

C

Y

DB'

C' D' E F

$ git rebase -i

origin/master

Your editor will open:
pick B’ ..
pick C’ ..
pick D’ ..
pick E ..

pick F ..

Benôıt Sigoure Demystifying the Git June 9, 2010 35 / 48

Go back to a known good state with rebase

In interactive mode, you can tell git rebase what you want.

A

HEAD

master

origin/
master

B X

C

Y

DB'

C' D' E F

Remove the commits that
aren’t yours.

In this case, just delete the first
line:
pick C’ ..
pick D’ ..
pick E ..

pick F ..

Benôıt Sigoure Demystifying the Git June 9, 2010 35 / 48

Go back to a known good state with rebase

In interactive mode, you can tell git rebase what you want.

A

HEAD

master

origin/
master

B X

C

Y

DB'

C' D' E F

C" D" E' F'

git rebase will cherry-pick
the commits you specified and
put them on top of
origin/master.

Benôıt Sigoure Demystifying the Git June 9, 2010 35 / 48

Outline

1 Introduction
Getting started
Differences with other SCMs like SVN

2 The basics
The index
Your daily workflow
Help! I screw up my repository!
Tips and tricks

3 More advanced
Code reviews
Under the hood

4 Conclusion
Final Words
Bonus

Benôıt Sigoure Demystifying the Git June 9, 2010 36 / 48

When creating a new branch...

Make sure you use

git co -b mybranch origin/master

This way Git will record (in .git/config) the fact that mybranch tracks
origin/master.

This way git pull won’t complain:

You asked me to pull without telling me which branch you
want to rebase against, and ’branch.mybranch.merge’ in
your configuration file does not tell me, either. Please
specify which branch you want to use on the command line and
try again (e.g. ’git pull <repository> <refspec>’).
See git-pull(1) for details.
[...]

Benôıt Sigoure Demystifying the Git June 9, 2010 37 / 48

Use the stash

$ git st
On branch master
Your branch is ahead of ’origin/master’ by 1 commit.
#
Changed but not updated:
(use "git add <file>..." to update what will be committed)
(use "git checkout -- <file>..." to discard changes in ...)
#
modified: quotes.txt
no changes added to commit (use "git add" and/or "git commit -a")

You’re in the middle of something, someone interrupts you:

“OMG, we just pushed this critical bug in your code,
please fix it ASAP!”

No, problem, git stash to the rescue!
Benôıt Sigoure Demystifying the Git June 9, 2010 38 / 48

Use the stash

$ git st
On branch master
Your branch is ahead of ’origin/master’ by 1 commit.
#
Changed but not updated:
(use "git add <file>..." to update what will be committed)
(use "git checkout -- <file>..." to discard changes in ...)
#
modified: quotes.txt
no changes added to commit (use "git add" and/or "git commit -a")
$ git stash
Saved working directory and index state WIP on master: 34a68e5 Add ...
HEAD is now at 34a68e5 Add a quote about time

$ git st
On branch master
Your branch is ahead of ’origin/master’ by 1 commit.
#
nothing to commit (working directory clean)

Benôıt Sigoure Demystifying the Git June 9, 2010 38 / 48

Use the stash

$ git st
On branch master
Your branch is ahead of ’origin/master’ by 1 commit.
#
Changed but not updated:
(use "git add <file>..." to update what will be committed)
(use "git checkout -- <file>..." to discard changes in ...)
#
modified: quotes.txt
no changes added to commit (use "git add" and/or "git commit -a")
$ git stash
Saved working directory and index state WIP on master: 34a68e5 Add ...
HEAD is now at 34a68e5 Add a quote about time
$ git st
On branch master
Your branch is ahead of ’origin/master’ by 1 commit.
#
nothing to commit (working directory clean)

Benôıt Sigoure Demystifying the Git June 9, 2010 38 / 48

Use the stash

• Now that everything is out of the way, you can fix that bug.

• Commit the fix.

• Push it out.

• git stash pop

• Resume what you were doing.

If you use git stash multiple times, changes get stacked up.

git stash list shows the stack of stashes.

Benôıt Sigoure Demystifying the Git June 9, 2010 38 / 48

Useful lil things

• git grep regexp: Recursive grep in the current directory.

• git show revision: Look at a given commit.

• git log --stat: Look at the history and see which files are affected
by each commit.

• Forgot something in your last commit? And you haven’t pushed yet?
Fix it and git commit -a --amend to rewrite the last commit.

• Want to return in the state just before the last git commit?
git reset HEAD∼1

• Want to get rid of all your pending changes?
git reset --hard — but think twice as there’s no going back with
this one!

• Git performs a lot better on a local filesystem than on NFS.

Benôıt Sigoure Demystifying the Git June 9, 2010 39 / 48

Outline

1 Introduction
Getting started
Differences with other SCMs like SVN

2 The basics
The index
Your daily workflow
Help! I screw up my repository!
Tips and tricks

3 More advanced
Code reviews
Under the hood

4 Conclusion
Final Words
Bonus

Benôıt Sigoure Demystifying the Git June 9, 2010 40 / 48

TBD

TBD

Benôıt Sigoure Demystifying the Git June 9, 2010 41 / 48

Outline

1 Introduction
Getting started
Differences with other SCMs like SVN

2 The basics
The index
Your daily workflow
Help! I screw up my repository!
Tips and tricks

3 More advanced
Code reviews
Under the hood

4 Conclusion
Final Words
Bonus

Benôıt Sigoure Demystifying the Git June 9, 2010 42 / 48

TBD

TBD

Benôıt Sigoure Demystifying the Git June 9, 2010 43 / 48

Outline

1 Introduction
Getting started
Differences with other SCMs like SVN

2 The basics
The index
Your daily workflow
Help! I screw up my repository!
Tips and tricks

3 More advanced
Code reviews
Under the hood

4 Conclusion
Final Words
Bonus

Benôıt Sigoure Demystifying the Git June 9, 2010 44 / 48

Conclusion

Git has a steep learning curve! But once you get past the initial learning
period, you save a lot of time with it.

• The index is your friend.

• Don’t be afraid of rebase.

• When in trouble, call the reflog to the rescue.

• TBD

Time for Q’n’A!

Don’t forget that the guy currently behind Git is Junio Hamano!
He does all the hard work and deserves all the credit!

Benôıt Sigoure Demystifying the Git June 9, 2010 45 / 48

Outline

1 Introduction
Getting started
Differences with other SCMs like SVN

2 The basics
The index
Your daily workflow
Help! I screw up my repository!
Tips and tricks

3 More advanced
Code reviews
Under the hood

4 Conclusion
Final Words
Bonus

Benôıt Sigoure Demystifying the Git June 9, 2010 46 / 48

He said it

• “I’m an egotistical bastard, and I name all my projects after myself. First
Linux, now git.” [2]

• “For the first 10 years of kernel maintenance, we literally used tarballs and
patches, which is a much superior source control management system than
CVS is”. [5]

• “I like colorized diffs, but let’s face it, those particular color choices will
make most people decide to pick out their eyes with a fondue fork.
And that’s not good. Digging in your eye-sockets with a fondue fork is
strictly considered to be bad for your health, and seven out of nine
optometrists are dead set against the practice. So in order to avoid a lot of
blind git users, please apply this patch.”

• “I will, in fact, claim that the difference between a bad programmer and a
good one is whether he considers his code or his data structures more
important. Bad programmers worry about the code. Good programmers
worry about data structures and their relationships.”

Benôıt Sigoure Demystifying the Git June 9, 2010 47 / 48

He said it

• “Nobody actually creates perfect code the first time around, except me. But
there’s only one of me.” [5]

• “If you have ever done any security work and it did not involve the concept
of ”network of trust”, it wasn’t security work, it was masturbation. I don’t
know what you were doing but trust me, it’s the only way you can do
security, and it’s the only way you can do development. The way I work, I
don’t trust everybody. In fact I am a very cynical and untrusting person. I
think most of you are completely incompetent” [5]

Trivia: Did you know that Git became self-hosting on its 4th day of development,

just 1 day after being announced?

Benôıt Sigoure Demystifying the Git June 9, 2010 47 / 48

Bibliography I

[1] Charles Duan.
Understanding git conceptually, April 2010.
URL http://www.eecs.harvard.edu/~cduan/technical/git/

[2] Robert McMillan and Linus Torvalds.
After controversy, torvalds begins work on ”git”.
PC World Business Australia, April 2005.
URL http://www.pcworld.idg.com.au/article/129776/after_controversy_torvalds_

begins_work_git_/

[3] Jakub Narebski et al.
Git Wiki, January 2010.
URL https://git.wiki.kernel.org/index.php/Git

[4] Linus Torvalds.
Re: Vcs comparison table.
Git Mailing List, October 2006.
URL http://marc.info/?l=git&m=116129092117475

[5] Linus Torvalds.
Tech talk: Linus torvalds on git.
@Google Tech Talk, May 2007.
URL http://www.youtube.com/watch?v=4XpnKHJAok8

Benôıt Sigoure Demystifying the Git June 9, 2010 48 / 48

http://www.eecs.harvard.edu/~cduan/technical/git/
http://www.pcworld.idg.com.au/article/129776/after_controversy_torvalds_begins_work_git_/
http://www.pcworld.idg.com.au/article/129776/after_controversy_torvalds_begins_work_git_/
https://git.wiki.kernel.org/index.php/Git
http://marc.info/?l=git&m=116129092117475
http://www.youtube.com/watch?v=4XpnKHJAok8

	Outline
	Introduction
	
	Getting started
	Differences with other SCMs like SVN

	The basics
	The index
	Your daily workflow
	Help! I screw up my repository!
	Tips and tricks

	More advanced
	Code reviews
	Under the hood

	Conclusion
	Final Words
	Bonus

	Appendix
	Appendix
	

